Special Relativity
Walter F. Smith, Haverford College 4-9-04
Propagation of waves through a medium

Asyou'll recall from last semester, when the speed of sound is measured relative to the ground,
it isfaster for sound waves traveling downwind than upwind:
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The air isthe “medium” which carries the sound.

The Michaelson-Morley experiment

In the late 1800’s, it was universally believed that light waves traveled through a medium as
well; the medium was called the “ether.” It was assumed that the ether was at rest with respect to
the center of the universe, or perhaps the center of the galaxy. In 1887, A. A. Michaelson and
E. W. Morley set out to measure differences in the speed of light caused by the motion of the
earth relative to the ether:
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The motion of the earth around the sun, they
reasoned, should create different conditions of
ether “wind” at the two different points,
leading to different measured values for the
speed of light.

They made extremely precise measurements, and always found exactly the same value for the
speed of light. The only logical conclusion was that light does not need a medium to travel
through! It can travel through vacuum! Another way of saying this is that the speed of light
measured by any experimenter will always be the same, whether the experimenter is moving to
the right, to the left, or is still. In fact, as we've seen, Maxwell’s equations show that the
propagation of light is a basic form of electromagnetism, which propagates at a speed



c:llﬁuo. Note that the speed of the observer doesn’'t appear in this equation, just as it
doesn’'t appear in F = ma. S0, in the same way that F = ma works in al constant velocity (or
“inertial”) reference frames, ¢ :1/\/5_0;10 worksin al reference frames, i.e., light propagates with

the same speed in al reference frames. (Again, this was shown by the Michaelson-Morley
experiment.)

The basic postulate of relativity:
The laws of physics work equally well in all inertial reference frames. Thereisno
preferred reference frame.

This includes the propagation of light, since as we discussed above, light propagation is a
consequence of Maxwell’s equations, and since the Michael son-Morley experiment showed that
light propagates at the same speed in a variety of reference frames.

This postulate has immediate counterintuitive consequences. For example, imagine two groups
of observers. One group (S) is “stationary,” while the other group (S') moves to the right at
speed V = 0.9 times the speed of light, i.e, V = 0.9 c. One of the S observers turns on a
flashlight, and the other S observers measure the speed at which the wavefront propagates:
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Flashlight Wavefront

The S observers, of course, measure a speed of ¢ for the wavefront. What speed do the S
observers measure? In the way we're accustomed to think, they would measure a speed of
1.0c-0.9c=0.1c. However, thisiswrong. The light is propagating in the S’ frame as well as
the Sframe, so it must move with aspeed of cin S aswell asin S!

In fact, as we'll see, this strange way of adding velocities is not unique to light propagation.
Similar effects occur for any object moving very close to the speed of light.

For example, we will show that if the observers in S throw a rock to the right with speed
(measured in S) of 0.99 c, then the observersin S will measure a speed of 0.83 ¢ for the rock,
instead of the speed of 0.09 c that one might expect. (Y ou can see that the effect is most extreme
for the case of something propagating at exactly c, since both sets of observers measure the same
speed for it, despite their large relative velocities, while on the example we just did they measure
similar but not identical velocities (0.99cinSand 0.83¢cin S').

The Galilean Transformation

Before we begin with the detailed discussion which leads to the rule used above for velocity
addition, as well asto the other very strange relativistic effects you may have heard of (e.g., time
dilation, length contraction), let’s return to the intuitive arena where things move at speeds much



less than ¢, and examine how we can express coordinates of an event as measured inin Sin
terms of the coordinates as measures in S'. By “event” | mean simply something with well-
defined x, y and z coordinates and a well-defined time when it happens. Good examples include
an explosion, a collision, and a particular tick on a particular clock.

Let’s say an event occurs at coordinates X', y', Z, and t’ in the S reference frame. (Again, S
moves to the right with speed V relativeto S.) What are the coordinates x, y, z and t of the event
as measured by the observersin x? We assume as we will for the remainder of our treatment of
relativity that the origins (x = y = z = 0) of the two reference frames coincideatt = t' = 0 (as
measured by clocks at the origins). We lose no generality by doing this, since we can always
choose wheret = 0. Because of the synchronization, we immediately havethatt = t'.

Let'sstart withaneasy case: X =y =Z =0, 1i.e, the event occurs at the originof S’ at timet'.
Since S movesto theright with speed V, at timet = t', the S originisat
x=Vt =Vt', y=0, z=0.

Now consider an event that occurs someplace elsein S, at coordinatesx’, y', Z, t'. Thisisredly
just like the case we just considered, except now there is an offset relative to the S’ origin of
X,y,Z:

7’ So, the coordinates in S are offset
Y by the same amount, i.e.,
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These relations between the event coordinates X', y', Z, t' as measured on S and those as
measured on Sis called the “ Galilean transformation.” It’s really nothing new, but just a formal
way of writing what you already understand about things moving at relatively small speeds.

The Galilean Velocity Transformation

A simple consequence of the Galilean transformation is the velocity addition rule which you're
used to, aswe'll show here. We consider not just a single event which occursat x',y', Z, t', but
rather an object which is moving, i.e, its coordinates X', y', and Z depend on time. The
components of its velocity, as measured in the S frame, are found as usua by taking the

- : o, X, dy , dZ
derivatives with respect to time: uy = v Uy = v u; = v
Galilean transformation with respect to t’, we can find the relationship between these velocities
(measured in S') and those measured in S:

. By taking the derivative of the
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Sincet = t', we have that dt = dt’, so uy EE:W’ etc. Substituting this into the above gives
the Galilean velocity transformation:
Uy = Uy +V
Uy =uy,
u,=uj

This should make intuitive sense to you, but as we've just discussed, it doesn’t work when the
speedsinvolved are closeto c.

Our Goal

Our goal isto develop the correct versions of the Galilean transformations, versions which work
both at ordinary speeds and at speeds close to c. Along the way, we will discover some pretty
odd effects:

» Therate a which time passesis not thesamein SasitisinS'.
= Eventswhich occur simultaneously in S don’t usually occur simultaneously in S'.
= Anobject hasadifferent length if measuredin Sthanin S

Time Dilation

Thelight clock

Part of the reason that velocities close to ¢ don't add in the way we expect is that time is
perceived differently in Sand S'. To investigate this, we'll use an unusual clock, the “light
clock”:

A device sends out a flash of light which
travels upward, bounces off a small

mirror mirror, and then returns to a detector,

-1 _ which is right next to the flash unit. As

T soon as this detector sees the reflected
light flash, it triggers another flash. Each

}_ of these cycles is one “tick” of the light
light | clock. Let's put one of these light clocks
clock | in the “moving” frame S. We'll show

that the rate at which this clock ticks, as

perceived by the observers in S, depends

sFed on V, the relative velocity between S’ and
flash—7 S.
) detector
unit




Light clocks vs. ordinary clocks

It’simportant to realize that the results we'll get are not limited to light clocks; any other clock in
S would display exactly the same variation. To see this, assume that the personin S’ isinitially
at rest relativeto S.  She has a conventional clock, which she adjusts so that it has the same tick
rate as the light clock. Now she starts moving. Since there is no preferred reference frame (by
the basic postulate of relativity), there should be no way for her to tell that she was previously
stationary and is now moving, rather than the other way around. For example, since the regular
clock and the light clock were synchronized when she was “stationary,” they should remain
synchronized now that sheis“moving.” We could make a similar argument using her heartbeat.
If there are a certain number of ticks of the lightclock per heartbeat when she is “stationary,”
there must be the same number when she is moving. It is still possible that the rate at which all
these clocks tick (the light clock, the regular clock, and her heart) might vary in unison, as seen
by the peoplein S. All that the personin S’ can tell isthat the clocks remain synchronized.

Since we could make these arguments using a chemical reaction or any other time-dependent
phenomenon instead of her heartbeat, we see the results we will derive for the variation in the
tick rate of the light clock in S’ (as seen by the people in S) are not limited to the behavior of the
light clock itself, but are actually statements about the way time itself is passingin S (as seen by
the peoplein S).



Derivation of time dilation
Firgt, let’s think about the path followed by the light, as seen in S and then as seen in S. The
situation is very similar to a person walking at constant speed who throws a ball straight up (as seen
by the walking person) into the air, and then catches it. To the person who is walking, the ball goes
straight up and then straight down. However, to a stationary observer, the ball follows

a parabolic trajectory:

S A
™
\-H 1o T
o ¥
?—i T-—* el ?“:_n ™ """"3‘#
. k
wtﬂ?‘f‘_::l M:' View of S.'LFMJ‘T Perso

Now imagine that the moving person is moving rather quickly, and throws the ball straight up,
but c!uit: fast. In fact, the ball bounces off the ceiling and then back down. Again, as seen by the
moving person the ball goes straight up, bounces, then comes straight back down. However, for
jxe stationary person, the ball, if thrown very fast, travels almost in straight diagonal lines up and
own:
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Finally, Ietts ]mk. at the path of the light flash in the light clock. This is like a very fast ball. To
the person in 57, it goes straight up and straight down. For the people mn 8, it travels in

diagonal lines up and down: F______ Vat -_i
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Let At be the time interval between when the flash is sent out and when it is received (i.e. the

Time inltcn"a] between light clock ticks), as measured in S. Since the clock (and everything else
in 8°) Is moving at speed V, the light pulse must cover a horizontal distance of VAt as shown

aﬁwz. The total path length covered by the light is then the sum of the hypotenuses as shown
above:

path length (in 8) = EJ{“ + [F—;{ ]l



Since the light travels at speed c, the time that it takes 1o cover this path, which is equal 10 At, is
given by

A : L (ary
However, it is also true that light travels with speed ¢ in §’, so we can use a similar method to
find the time At’ between ticks as measured in S’:

2 4
At= pathlength(mS) (m)z f
c c?
We can see right away that this is srnaller than (At) i.e. that the time between ticks as measured
by the person in S’ is shorter than the time between ticks as measured by the people in S! Let’s
get more quantitative. Substlrutmg our expression for (At’ ) into the equation for (At)” gives

(A:) ==(At') +F(N) < (ar) [1-%):(&') ﬁm:ﬁm'

We’ll encounter that square-root factor a lot, so we define

1
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Aswe'll see eventually, V is always less than or equal to ¢, so y isaways greater than 1. This
equation says that the time between ticks as measured in Sis greater than the time between ticks
asmeasured in S by afactor of y! Thefaster S is moving, the greater the size of this effect.
Let’s assume that when everyone is a rest, their hearts beat at the same rate. Since he “dilation
of time” derived above applies to all “clocks” in S, including the heartbeat of the personin S,
this means that, as measured by the people in S. there is alonger time between the heartbeats of
the person in S’ than between their own heartbesats, and the faster she moves the longer this time
becomes. Thus (according to the people in S), the person is S’ is aging more slowly than they
are!
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This effect only become easily noticeable <0
when V is greater than about 0.1c, as you
can see fromthe plot of y shown here. ok

Verification Of Time Dilation

[This paragraph is taken from a | —
textbook.] A striking confirmation of
time dilation was achieved in 1971 by an
experiment carried out by J.C. Hafele m 10 -_—
and R.E. Keating. They transported very >0
precise cesum-beam atomic clocks o : . ) .
around the world on commercia jets. 02 Ole 0S¢ . Ok
Since the speed of a jet plane is V
considerably less than c, the time-dilation effect is extremely small. However, the atomic clocks
were accurate to about +10°° s, so that the effect could be measured. The clocks were in the air
for 45 hours, and their times were compared to reference atomic clocks kept on earth. The
experimental results revealed that, within experimental error, the readings on the clocks on board
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the planes were different from those on earth by an amount that agreed with the prediction of
relativity.

Proper time

We just showed that At=y At” However, this seems to contradict the fundamental postulate of
relativity, since the eguation is not symmetrical between the two reference frames; the time
interval as measured in S is longer than that measured in S', and the faster S goes, the more
dramatic this effect becomes. However, there is something about the experiment with the light
clock itself which makes a fundamental distinction between the two reference frames. The time
interval At represents the time interval between two events. thefirst event is the flash, and the
second is the reception of the flash. The fundamental distinction between the reference framesis
that in S' these two events occur at the same place, while in S they occur at different places.

Thus, if we instead did the experiment with the light clock in S (instead of S’) then the roles of
the two reference frames would be reversed, and we would find At" =y At, i.e. that the time as
measured in S’ between the two events is longer than the time as measured in S.  So, the two
reference frames really are equally good, it just depends on how we do the experiment.

We note that the shorter time is always measured in the reference frame in which the two events
occur at the same place: When the clock wasin S', the shorter time was measured in S, whereas
when the clock was in S, the shorter time was measured in S. We define the “proper time’
between two events to be the time as measured in the reference frame in which the two
events occur at the same place. With this definition, we can summarize all such experiments
with asingle equation:

Atother = 7Alp

where Aty is the proper time, and Atgher is the time as measured in some other reference

frame. For example, if we do the experiment with the light clock in S, then both events (the flash
and the reception) occur at the same placein S, s0 and Aty =AtandAtgpe =At". However,

if we do the experiment with the light clock in S then both events (the flash and the reception)
occur a thesame placein S, so Aty =At’and Atgine =At.

The rate at which clocks tick

One important type of event is the ticking of any clock. Subsequent ticks of a clock occur at the
same place in the clock’s “rest frame” (the reference frame in which the clock isn’t moving), so
the people in this frame would measure At,between the ticks. Observersin any other reference

frame would thus measure a longer time between ticks, i.e., they would say that the clock runs
slow. The conclusion of thisis:

Clocks in the other person’s reference frame run slow; the time between ticks is increased by the
factor y.

(Thisis equivalent to the equation form in the box above.)



