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Special Relativity 
Walter F. Smith, Haverford College 4-9-04  

Propagation of waves through a medium 
As you’ll recall from last semester, when the speed of sound is measured relative to the ground, 
it is faster for sound waves traveling downwind than upwind: 
 

 
      
The air is the “medium” which carries the sound.  
The Michaelson-Morley experiment 
In the late 1800’s, it was universally believed that light waves traveled through a medium as 
well; the medium was called the “ether.”  It was assumed that the ether was at rest with respect to 
the center of the universe, or perhaps the center of the galaxy.  In 1887, A. A. Michaelson and 
E. W. Morley set out to measure differences in the speed of light caused by the motion of the 
earth relative to the ether: 
 
 

 
They made extremely precise measurements, and always found exactly the same value for the 
speed of light.  The only logical conclusion was that light does not need a medium to travel 
through!  It can travel through vacuum!  Another way of saying this is that the speed of light 
measured by any experimenter will always be the same, whether the experimenter is moving to 
the right, to the left, or is still.  In fact, as we’ve seen, Maxwell’s equations show that the 
propagation of light is a basic form of electromagnetism, which propagates at a speed 
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c =1/ εoµo .  Note that the speed of the observer doesn’t appear in this equation, just as it 
doesn’t appear in F = ma.  So, in the same way that F = ma works in all constant velocity (or 
“inertial”) reference frames, c =1/ εoµo  works in all reference frames, i.e., light propagates with 
the same speed in all reference frames.  (Again, this was shown by the Michaelson-Morley 
experiment.)   
The basic postulate of relativity: 
 The laws of physics work equally well in all inertial reference frames.  There is no 
 preferred reference frame.  
This includes the propagation of light, since as we discussed above, light propagation is a 
consequence of Maxwell’s equations, and since the Michaelson-Morley experiment showed that 
light propagates at the same speed in a variety of reference frames.  
This postulate has immediate counterintuitive consequences.  For example, imagine two groups 
of observers.  One group (S) is “stationary,” while the other group (S’) moves to the right at 
speed V = 0.9 times the speed of light, i.e., V = 0.9 c.  One of the S observers turns on a 
flashlight, and the other S observers measure the speed at which the wavefront propagates: 
 

 
The S observers, of course, measure a speed of c for the wavefront.  What speed do the S’ 
observers measure?  In the way we’re accustomed to think, they would measure a speed of 
1.0 c - 0.9 c = 0.1 c.  However, this is wrong.  The light is propagating in the S’ frame as well as 
the S frame, so it must move with a speed of c in S’ as well as in S!  
In fact, as we’ll see, this strange way of adding velocities is not unique to light propagation.  
Similar effects occur for any object moving very close to the speed of light.  
For example, we will show that if the observers in S throw a rock to the right with speed 
(measured in S) of 0.99 c, then the observers in S’ will measure a speed of 0.83 c for the rock, 
instead of the speed of 0.09 c that one might expect.  (You can see that the effect is most extreme 
for the case of something propagating at exactly c, since both sets of observers measure the same 
speed for it, despite their large relative velocities, while on the example we just did they measure 
similar but not identical velocities (0.99 c in S and 0.83 c in S’). 
 
The Galilean Transformation  
Before we begin with the detailed discussion which leads to the rule used above for velocity 
addition, as well as to the other very strange relativistic effects you may have heard of (e.g., time 
dilation, length contraction), let’s return to the intuitive arena where things move at speeds much 
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less than c, and examine how we can express coordinates of an event as measured in in S in 
terms of the coordinates as measures in S’.  By “event” I mean simply something with well-
defined x, y and z coordinates and a well-defined time when it happens.  Good examples include 
an explosion, a collision, and a particular tick on a particular clock.  
Let’s say an event occurs at coordinates x’, y’, z’, and t’ in the S’ reference frame.   (Again, S’ 
moves to the right with speed V relative to S.)  What are the coordinates x, y, z and t of the event 
as measured by the observers in x?   We assume as we will for the remainder of our treatment of 
relativity that the origins (x = y = z = 0) of the two reference frames coincide at t = t’ = 0 (as 
measured by clocks at the origins).  We lose no generality by doing this, since we can always 
choose where t = 0.  Because of the synchronization, we immediately have that t = t’.  
Let’s start with an easy case:   x’ = y’ = z’ = 0, i.e., the event occurs at the origin of S’ at time t’. 
Since S’ moves to the right with speed V, at time t = t’, the S’ origin is at   

x = Vt  = Vt’,   y = 0,   z = 0.  
Now consider an event that occurs someplace else in S’, at coordinates x’, y’, z’, t’.  This is really 
just like the case we just considered, except now there is an offset relative to the S’ origin of 
x’, y’, z’: 

 
These relations between the event coordinates x’, y’, z’, t’ as measured on S’ and those as 
measured on S is called the “Galilean transformation.”  It’s really nothing new, but just a formal 
way of writing what you already understand about things moving at relatively small speeds.  
 
The Galilean Velocity Transformation  
A simple consequence of the Galilean transformation is the velocity addition rule which you’re 
used to, as we’ll show here.  We consider not just a single event which occurs at  x’, y’, z’, t’, but 
rather an object which is moving, i.e., its coordinates x’, y’, and  z’ depend on time.  The 
components of its velocity, as measured in the S’ frame, are found as usual by taking the 

derivatives with respect to time:  
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Galilean transformation with respect to t’, we can find the relationship between these velocities 
(measured in S’) and those measured in S: 
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Since t = t’, we have that dt = dt’, so 
td
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=≡ , etc.  Substituting this into the above gives 

the Galilean velocity transformation: 
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This should make intuitive sense to you, but as we’ve just discussed, it doesn’t work when the 
speeds involved are close to c. 
 
Our Goal 
Our goal is to develop the correct versions of the Galilean transformations, versions which work 
both at ordinary speeds and at speeds close to c.  Along the way, we will discover some pretty 
odd effects: 
 

 The rate at which time passes is not the same in S as it is in S’. 
 Events which occur simultaneously in S don’t usually occur simultaneously in S’. 
 An object has a different length if measured in S than in S’ 

 
Time Dilation 
The light clock 
Part of the reason that velocities close to c don’t add in the way we expect is that time is 
perceived differently in S and S’.  To investigate this, we’ll use an unusual clock, the “light 
clock”: 

A device sends out a flash of light which 
travels upward, bounces off a small 
mirror, and then returns to a detector, 
which is right next to the flash unit.  As 
soon as this detector sees the reflected 
light flash, it triggers another flash.  Each 
of these cycles is one “tick” of the light 
clock.  Let’s put one of these light clocks 
in the “moving” frame S’.  We’ll show 
that the rate at which this clock ticks, as 
perceived by the observers in S, depends 
on V, the relative velocity between S’ and 
S. 
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Light clocks vs. ordinary clocks 
It’s important to realize that the results we’ll get are not limited to light clocks; any other clock in 
S’ would display exactly the same variation.  To see this, assume that the person in S’ is initially 
at rest relative to S.  She has a conventional clock, which she adjusts so that it has the same tick 
rate as the light clock.  Now she starts moving.  Since there is no preferred reference frame (by 
the basic postulate of relativity), there should be no way for her to tell that she was previously 
stationary and is now moving, rather than the other way around.  For example, since the regular 
clock and the light clock were synchronized when she was “stationary,” they should remain 
synchronized now that she is “moving.”  We could make a similar argument using her heartbeat.  
If there are a certain number of ticks of the lightclock per heartbeat when she is “stationary,” 
there must be the same number when she is moving.  It is still possible that the rate at which all 
these clocks tick (the light clock, the regular clock, and her heart) might vary in unison, as seen 
by the people in S.  All that the person in S’ can tell is that the clocks remain synchronized.  
Since we could make these arguments using a chemical reaction or any other time-dependent 
phenomenon instead of her heartbeat, we see the results we will derive for the variation in the 
tick rate of the light clock in S’ (as seen by the people in S) are not limited to the behavior of the 
light clock itself, but are actually statements about the way time itself is passing in S’ (as seen by 
the people in S). 
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Derivation of time dilation 
First, let’s think about the path followed by the light, as seen in S’ and then as seen in S.  The 
situation is very similar to a person walking at constant speed who throws a ball straight up (as seen 
by the walking person) into the air, and then catches it.  To the person who is walking, the ball goes 
straight up and then straight down.  However, to a stationary observer, the ball follows 
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As we’ll see eventually, V is always less than or equal to c, so γ  is always greater than 1.  This 
equation says that the time between ticks as measured in S is greater than the time between ticks 
as measured in S’ by a factor of γ !  The faster S’ is moving, the greater the size of this effect.  
Let’s assume that when everyone is at rest, their hearts beat at the same rate.  Since he “dilation 
of time” derived above applies to all “clocks” in S’, including the heartbeat of the person in S’, 
this means that, as measured by the people in S. there is a longer time between the heartbeats of 
the person in S’ than between their own heartbeats, and the faster she moves the longer this time 
becomes.  Thus (according to the people in S), the person is S’ is aging more slowly than they 
are!  
This effect only become easily noticeable 
when V is greater than about 0.1c, as you 
can see from the plot of γ  shown here. 
 
Verification Of Time Dilation  
 [This paragraph is taken from a 
textbook.] A striking confirmation of 
time dilation was achieved in 1971 by an 
experiment carried out by J.C. Hafele 
and R.E. Keating.  They transported very 
precise cesium-beam atomic clocks 
around the world on commercial jets.  
Since the speed of a jet plane is 
considerably less than c, the time-dilation effect is extremely small.  However, the atomic clocks 
were accurate to about ±10−9 s, so that the effect could be measured.  The clocks were in the air 
for 45 hours, and their times were compared to reference atomic clocks kept on earth.  The 
experimental results revealed that, within experimental error, the readings on the clocks on board 
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the planes were different from those on earth by an amount that agreed with the prediction of 
relativity. 
 
Proper time 
We just showed that tt ′∆∆ γ =   However, this seems to contradict the fundamental postulate of 
relativity, since the equation is not symmetrical between the two reference frames; the time 
interval as measured in S is longer than that measured in S’, and the faster S’ goes, the more 
dramatic this effect becomes.  However, there is something about the experiment with the light 
clock itself which makes a fundamental distinction between the two reference frames.  The time 
interval  t∆  represents the time interval between two events:  the first event is the flash, and the 
second is the reception of the flash.  The fundamental distinction between the reference frames is 
that in S’ these two events occur at the same place, while in S they occur at different places.  
Thus, if we instead did the experiment with the light clock in S (instead of S’) then the roles of 
the two reference frames would be reversed, and we would find tt ∆′∆ γ = , i.e. that the time as 
measured in S’ between the two events is longer than the time as measured in S.  So, the two 
reference frames really are equally good, it just depends on how we do the experiment.  
We note that the shorter time is always measured in the reference frame in which the two events 
occur at the same place:  When the clock was in S’, the shorter time was measured in S’, whereas 
when the clock was in S, the shorter time was measured in S.  We define the “proper time” 
between two events to be the time as measured in the reference frame in which the two 
events occur at the same place.  With this definition, we can summarize all such experiments 
with a single equation:  

pother  tt ∆=∆ γ  
 
where pt∆  is the proper time, and  othert∆  is the time as measured in some other reference 
frame.  For example, if we do the experiment with the light clock in S, then both events (the flash 
and the reception) occur at the same place in S, so  and  tttt ′∆=∆∆=∆   and  other p .  However, 
if we do the experiment with the light clock in S’ then both events (the flash and the reception) 
occur at the same place in S’, so  ttt ∆=∆′∆=∆   and  t other p . 
 
The rate at which clocks tick 
One important type of event is the ticking of any clock.  Subsequent ticks of a clock occur at the 
same place in the clock’s “rest frame” (the reference frame in which the clock isn’t moving), so 
the people in this frame would measure pt∆ between the ticks.  Observers in any other reference 
frame would thus measure a longer time between ticks, i.e., they would say that the clock runs 
slow.  The conclusion of this is:  
Clocks in the other person’s reference frame run slow; the time between ticks is increased by the 
factor γ . 
 
 (This is equivalent to the equation form in the box above.) 


